AI Principles
-
Video Content
- Papers
-
Review of bias in algorithmic decision making, UK CDEI report
-
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1-11.
-
Gupta, A., Lanteigne, C., Heath, V., Ganapini, M.B., Galinkin, E., Cohen, A., Gasperis, T.D., Akif, M., & Butalid, R. (2020). The State of AI Ethics Report (June 2020). ArXiv, abs/2006.14662.
-
U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. Moura and P. Eckersley. Explainable Machine Learning in Deployment. In the ACM Conference on Fairness, Accountability, and Transparency (FAT*), 2020.
-
A. Weller. Transparency: Motivations and Challenges. Chapter 2 in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer Lecture Notes in Computer Science, vol 11700, edited by W. Samek, G. Montavon, A. Vedaldi, L. Hansen, K. Muller, 2019.
Preprint -
T. Speicher, H. Heidari, N. Grgić-Hlača, K. P. Gummadi, A. Singla, A. Weller and M. Zafar. A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual & Group Unfairness via Inequality Indices. In Knowledge Discovery and Data mining (KDD), 2018
-
N. Grgić-Hlača, E. Redmiles, K. P. Gummadi and A. Weller. Human perceptions of fairness in algorithmic decision making: A case study of criminal risk prediction. In The Web Conference (WWW), 2018.
-
N. Grgić-Hlača, M. Zafar, K. P. Gummadi and A. Weller. Beyond Distributive Fairness in Algorithmic Decision Making: Feature Selection for Procedurally Fair Learning. In the Association for the Advancement of Artificial Intelligence conference (AAAI), 2018.
-
M. Zafar, I. Valera, M. Rodriguez, K. P. Gummadi and A. Weller. From parity to preference-based notions of fairness in classification. In Neural Information Processing Systems (NeurIPS), 2017.
-
Machine Ethics
-
Video Content
-
Three principles for creating safer AI, Stuart Russell, TED, 2017
-
Moral Machines: From Machine Ethics to Value Alignment, Wendell Wallach,
-
Verifiability Talk 1: Verifying Machine Ethics, Louise Dennis, U of Manchester
-
What is Machine Ethics?, Louise Dennis, U of Manchester
-
- Papers
-
Ruseell, S. (2017). Provably beneficial artificial intelligence. The Next Step: Exponential Life, BBVA OpenMind.
-
Wallach, W., Allen, C., & Franklin, S. (2011). Consciousness and Ethics: Artificially Conscious Moral Agents. International Journal of Machine Consciousness, 03, 177-192.
-
Tolmeijer, S., Kneer, M., Sarasua, C., Christen, M., & Bernstein, A. (2020). Implementations in Machine Ethics: A Survey. ArXiv, abs/2001.07573.
-
Automating Machine Ethics
-
Video Content
-
Papers
-
Nallur, V. (2020). Landscape of Machine Implemented Ethics. Science and Engineering Ethics, 1-19.
-
Anderson, M., Anderson, S. L. and Berenz, V. (2019). A value-driven eldercare robot: Virtual and physical instantiations of a case-supported principle-based behavior paradigm. Proceedings of the IEEE, 107(3), pp. 526–540
-
Berreby, F., Bourgne, G. and Ganascia, J.-G. (2018). Event-based and scenario-based causality for computational ethics. Proceedings of the 17th international conference on autonomous agents and MultiAgent systems. pp. 147–155.
-
Cointe, N., Bonnet, G. and Boissier, O. (2016). Ethical judgment of agents’ behaviors in multi-agent systems. Proceedings of the 2016 international conference on autonomous agents & multiagent systems. pp. 1106–1114.
-
Dennis, L. and Fisher, M. (2018). Practical challenges in explicit ethical machine reasoning, in International symposium on artificial intelligence and mathematics.
-
Lindner, F., Bentzen, M. M. and Nebel, B. (2017). The HERA approach to morally competent robots. 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp. 6991–6997. doi: 10.1109/iros.2017.8206625.
-
Enterprise AI
Preread Summary: here
-
Video Content
-
How can we design responsible AI – World Economic Forum, 2019.
-
-
Papers
-
Responsible AI Toolkit – PwC
-
The Responsible Machine Learning Principles – The Institute for Ethical AI & Machine Learning
-
Responsible AI Resources – Microsoft
-
Responsible AI – Google
-
Top-down and end-to-end governance for the responsible use of AI
-
[Newly Added] Implementing AI principles: Frameworks, Processes, and Tools
-
Public Sector AI
Preread Summary: here
-
Papers
-
[Newly Added] National Security Commission On Artificial Intelligence (2021). Final Report.
-
Vincent, V.R. (2020). AI Watch - National strategies on Artificial Intelligence: A European perspective in 2019.
-
Blasch, E., Sung, J., Nguyen, T., Daniel, C.P., & Mason, A.P. (2019). Artificial Intelligence Strategies for National Security and Safety Standards. ArXiv, abs/1911.05727.
-
Hill, S. (2020). AI's Impact on Multilateral Military Cooperation: Experience from NATO. AJIL Unbound, 114, 147 - 151.
-
A framework for developing a National AI Strategy. World Economic Forum.
-
AI Procurement in a box. World Economic Forum.
-
Fhaoláin, Labhaoise Ní and A. Hines. “Could regulating the creators deliver trustworthy AI?” ArXiv abs/2006.14750 (2020).
-
NíFhaoláin, Labhaoise et al. “Assessing the Appetite for Trustworthiness and the Regulation of Artificial Intelligence in Europe.” AICS (2020).
-
Operationalizing AI Ethics
-
Video Content
-
- Papers
-
Canca, C. (2020). Operationalizing AI ethics principles. Communications of the ACM, 63, 18 - 21.
-
Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020). From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices. Science and Engineering Ethics, 26, 2141 - 2168.
-
Baxter, K., Schlesinger, Y., Aerni, S., Baker, L., Dawson, J., Kenthapadi, K., Kloumann, I.M., & Wallach, H. (2020). Bridging the gap from AI ethics research to practice. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
-
Hallensleben, S., Fetic, L., Fleischer, T., Grünke, Hagendorff, T., Hauer, M.P., Hauschke, A., Heesen, J., Herrmann, M., Hillerbrand, R., Hubig, C., Kaminski, A., Krafft, T.D., Loh, W., Otto, P., Puntschuh, M., & Hustedt, C. (2020). From Principles to Practice : An interdisciplinary framework to operationalise AI ethics.
-
Walz, A., & Firth-Butterfield, K. (2019). Implementing ethics into artificial intelligence: a contribution, from a legal perspective, to the development of an AI governance regime. Duke law and technology review, 18, 176-231.
-
Certifications and Standards
-
Video Content
-
-
-
Papers
-
Global perspective and Insights – The IIA’s AI auditing framework
-
AI applied to risk management – Foundation of European Risk Management Associations
-
Emerging Technology Certifications - CERTNEXUS